363 research outputs found

    Chronic Progressive External Ophthalmoplegia Is Associated with a Novel Mutation in the Mitochondrial tRNA(Asn) Gene

    Get PDF
    Chronic progressive external ophthalmoplegia (CPEO) is caused by a decreased oxidative phosphorylation (OXPHOS) activity due to large-scale deletions of the mitochondrial genome in 50 % of the patients. The deletions encompass structural OXPHOS genes as well as tRNA genes, required for their expression so that the pathogenesis could be due to the deleted OXPHOS subunits or to an impaired mitochondrial translation. We have analyzed the mitochondrial genome of a patient presenting with CPEO for single base substitutions and discovered a novel heteroplasmic mutation in the tRNAAsn gene at position 5692 that converts a highly conserved adenine into a guanine. This mutation is unique because it is located at the transition of the anticodon loop to the anticodon stem and it leads to an additional base pair, thus reducing the number of loop-forming nucleotides from seven to five. Our findings suggest that CPEO can be caused by a single base substition in a mitochondrial tRNA gene so that the mitochondrial protein synthesis becomes the rate limiting step in OXPHOS fidelity

    Emerging Disease-Modifying Therapies in Neurodegeneration With Brain Iron Accumulation (NBIA) Disorders

    Get PDF
    Neurodegeneration with Brain Iron Accumulation (NBIA) is a heterogeneous group of progressive neurodegenerative diseases characterized by iron deposition in the globus pallidus and the substantia nigra. As of today, 15 distinct monogenetic disease entities have been identified. The four most common forms are pantothenate kinase-associated neurodegeneration (PKAN), phospholipase A2 group VI (PLA2G6)-associated neurodegeneration (PLAN), beta-propeller protein-associated neurodegeneration (BPAN) and mitochondrial membrane protein-associated neurodegeneration (MPAN). Neurodegeneration with Brain Iron Accumulation disorders present with a wide spectrum of clinical symptoms such as movement disorder signs (dystonia, parkinsonism, chorea), pyramidal involvement (e.g., spasticity), speech disorders, cognitive decline, psychomotor retardation, and ocular abnormalities. Treatment remains largely symptomatic but new drugs are in the pipeline. In this review, we discuss the rationale of new compounds, summarize results from clinical trials, provide an overview of important results in cell lines and animal models and discuss the future development of disease-modifying therapies for NBIA disorders. A general mechanistic approach for treatment of NBIA disorders is with iron chelators which bind and remove iron. Few studies investigated the effect of deferiprone in PKAN, including a recent placebo-controlled double-blind multicenter trial, demonstrating radiological improvement with reduction of iron load in the basal ganglia and a trend to slowing of disease progression. Disease-modifying strategies address the specific metabolic pathways of the affected enzyme. Such tailor-made approaches include provision of an alternative substrate (e.g., fosmetpantotenate or 4 '-phosphopantetheine for PKAN) in order to bypass the defective enzyme. A recent randomized controlled trial of fosmetpantotenate, however, did not show any significant benefit of the drug as compared to placebo, leading to early termination of the trials' extension phase. 4 '-phosphopantetheine showed promising results in animal models and a clinical study in patients is currently underway. Another approach is the activation of other enzyme isoforms using small molecules (e.g., PZ-2891 in PKAN). There are also compounds which counteract downstream cellular effects. For example, deuterated polyunsaturated fatty acids (D-PUFA) may reduce mitochondrial lipid peroxidation in PLAN. In infantile neuroaxonal dystrophy (a subtype of PLAN), desipramine may be repurposed as it blocks ceramide accumulation. Gene replacement therapy is still in a preclinical stage

    Multi-Omics Approach to Mitochondrial DNA Damage in Human Muscle Fibers

    Full text link
    Mitochondrial DNA deletions affect energy metabolism at tissue-specific and cell-specific threshold levels, but the pathophysiological mechanisms determining cell fate remain poorly understood. Chronic progressive external ophthalmoplegia (CPEO) is caused by mtDNA deletions and characterized by a mosaic distribution of muscle fibers with defective cytochrome oxidase (COX) activity, interspersed among fibers with retained functional respiratory chain. We used diagnostic histochemistry to distinguish COX-negative from COX-positive fibers in nine muscle biopsies from CPEO patients and performed laser capture microdissection (LCM) coupled to genome-wide gene expression analysis. To gain molecular insight into the pathogenesis, we applied network and pathway analysis to highlight molecular differences of the COX-positive and COX-negative fiber transcriptome. We then integrated our results with proteomics data that we previously obtained comparing COX-positive and COX-negative fiber sections from three other patients. By virtue of the combination of LCM and a multi-omics approach, we here provide a comprehensive resource to tackle the pathogenic changes leading to progressive respiratory chain deficiency and disease in mitochondrial deletion syndromes. Our data show that COX-negative fibers upregulate transcripts involved in translational elongation and protein synthesis. Furthermore, based on functional annotation analysis, we find that mitochondrial transcripts are the most enriched among those with significantly different expression between COX-positive and COX-negative fibers, indicating that our unbiased large-scale approach resolves the core of the pathogenic changes. Further enrichments include transcripts encoding LIM domain proteins, ubiquitin ligases, proteins involved in RNA turnover, and, interestingly, cell cycle arrest and cell death. These pathways may thus have a functional association to the molecular pathogenesis of the disease. Overall, the transcriptome and proteome show a low degree of correlation in CPEO patients, suggesting a relevant contribution of post-transcriptional mechanisms in shaping this disease phenotype

    An international registry for neurodegeneration with brain iron accumulation

    Get PDF
    We report the development of an international registry for Neurodegeneration with Brain Iron Accumulation (NBIA), in the context of TIRCON (Treat Iron-Related Childhood-Onset Neurodegeneration), an EU-FP7-funded project. This registry aims to combine scattered resources, integrate clinical and scientific knowledge, and generate a rich source for future research studies. This paper describes the content, architecture and future utility of the registry with the intent to capture as many NBIA patients as possible and to offer comprehensive information to the international scientific community

    SPG10 is a rare cause of spastic paraplegia in European families

    Get PDF
    Background: SPG10 is an autosomal dominant form of hereditary spastic paraplegia (HSP), which is caused by mutations in the neural kinesin heavy chain KIF5A gene, the neuronal motor of fast anterograde axonal transport. Only four mutations have been identified to date.Objective: To determine the frequency of SPG10 in European families with HSP and to specify the SPG10 phenotype.Patients and methods: 80 index patients from families with autosomal dominant HSP were investigated for SPG10 mutations by direct sequencing of the KIF5A motor domain. Additionally, the whole gene was sequenced in 20 of these families.Results: Three novel KIF5A mutations were detected in German families, including one missense mutation (c.759G>T, p.K253N), one in frame deletion (c.768_770delCAA, p.N256del) and one splice site mutation (c.217G>A). Onset of gait disturbance varied from infancy to 30 years of age. All patients presented clinically with pure HSP, but a subclinical sensory--motor neuropathy was detected by neurophysiology studies.Conclusions: SPG10 accounts for approximately 3% of European autosomal dominant HSP families. All mutations affect the motor domain of kinesin and thus most likely impair axonal transport. Clinically, SPG10 is characterised by spastic paraplegia with mostly subclinical peripheral neuropathy

    Patient and caregiver experiences with pantothenate kinase-associated neurodegeneration (PKAN): results from a patient community survey

    Get PDF
    Dystonia; Iron accumulation; NeurodegenerationDistonía; Acumulación de hierro; NeurodegeneraciónDistonia; Acumulació de ferro; NeurodegeneracióBackground Pantothenate kinase-associated neurodegeneration (PKAN) is a rare autosomal recessive genetic disorder of PANK2, which enables mitochondrial synthesis of coenzyme A. Its loss causes neurodegeneration with iron accumulation primarily in motor-related brain areas. Symptoms include dystonia, parkinsonism, and other disabilities. PKAN has been categorized as classic PKAN, with an age of onset ≤ 10 years, rapid progression, and early disability or death; and atypical PKAN, with later onset, slower progression, generally milder, and more diverse symptom manifestations. Available treatments are mostly palliative. Information on the lived experience of patients with PKAN and their caregivers or on community-level disease burden is limited. It is necessary to engage patients as partners to expand our understanding and improve clinical outcomes. This patient-oriented research study used multiple-choice and free-form question surveys distributed by patient organizations to collect information on the manifestations and disease burden of PKAN. It also assessed respondents’ experiences and preferences with clinical research to inform future clinical trials. Results The analysis included 166 surveys. Most respondents (87%) were parents of a patient with PKAN and 7% were patients, with 80% from Europe and North America. The study cohort included 85 patients with classic PKAN (mean ± SD age of onset 4.4 ± 2.79 years), 65 with atypical PKAN (13.8 ± 4.79 years), and 16 identified as “not sure”. Respondents reported gait disturbances and dystonia most often in both groups, with 44% unable to walk. The classic PKAN group reported more speech, swallowing, and visual difficulties and more severe motor problems than the atypical PKAN group. Dystonia and speech/swallowing difficulties were reported as the most challenging symptoms. Most respondents reported using multiple medications, primarily anticonvulsants and antiparkinsonian drugs, and about half had participated in a clinical research study. Study participants reported the most difficulties with the physical exertion associated with imaging assessments and travel to assessment sites. Conclusions The survey results support the dichotomy between classic and atypical PKAN that extends beyond the age of onset. Inclusion of patients as clinical research partners shows promise as a pathway to improving clinical trials and providing more efficacious PKAN therapies.This study was sponsored by CoA Therapeutics

    Localization, analysis and evolution of transposed human immunoglobulin VK genes

    Get PDF
    The localization of Vκ gene regions to chromosome 2, on which the κ locus is located, and to other chromosomes is described. The Vκ genes that have been transposed to other chromosomes are called orphons. The finding of two new Vκ genes on chromosome 22 is reported. A Vκ II gene of this region and two Vκ I genes of the Chr 1 and the cos 118 regions were sequenced. The two Vκ I orphon sequences and two others that had been determined previously were 97.5% identical, indicating that they may have evolved from a common ancestor by amplification. A model of the evolution of the human Vκ orphons is discussed. Author Keywords: Human-rodent cell hybrids; cosmids; restriction maps; ligation artifacts; orphon; recombinant DNA Abbreviations: aa, amino acid(s); bp, base pair(s); Chr1, Vκ gene-containing regions of chromosomes 1; Chr22, Vκ gene-containing regions of chromosomes 22; FR, framework regions; CDR, complementary determining regions; kb, kilo-base(s) or 1000 bp; L, L′, parts of a leader gene segment; m219-1, the first subclone of the cosmid clone cos 219; orphon, Vκ gene outside the κ locus on chromosome 2pl2; SSC, 0.15 M NaCl, 0.015 M Na3-citrate, pH 7.6; V, variable gene segments; J, joining gene segments; C, constant gene segments; Vκ I to Vκ IV, variable gene segments of immunoglobulin light chains of the κ type belonging to subgroups I to IV; for reasons of simplicity Vκ gene segments are generally called Vκ gene
    corecore